



## Structural and dual mode up-conversion and down-shifting properties of $\text{Er}^{3+}/\text{Yb}^{3+}$ activated $\text{SrTiO}_3$ phosphor

Biswaranjan Mishra<sup>1</sup>, Deva Sucharitha Chakram<sup>1</sup>, Bheeshma Pratap Singh<sup>1,\*</sup>, Kavitha Chandu<sup>1</sup>, Kagola Upendra Kumar<sup>2</sup>, Madhavaprasad Dasari<sup>1,\*</sup>

<sup>1</sup>Department of Physics, GITAM School of Science, GITAM (Deemed to be University) Visakhapatnam-530045, India

<sup>2</sup>Department of Physics, School of Applied Sciences, REVA University, Bangalore - 560 064, India

Received 23 September 2025; Received in revised form 21 November 2025; Accepted 5 December 2025

### Abstract

*Dual-mode down-shifting and up-converting  $\text{SrTiO}_3:\text{Er}^{3+}/\text{Yb}^{3+}$  doped phosphor was synthesized via the solid-state ceramic route. Structural characterization via XRD confirms formation of the cubic  $\text{SrTiO}_3$  perovskite phase (space group  $\text{Pm}\bar{3}m$ ) with small amount of secondary  $\text{Yb}_2\text{Ti}_2\text{O}_7$  phase. SEM study confirms the irregular semispherical micrograins. UV-Vis data confirms the absorption of  $\text{Yb}^{3+}$  at 980 nm. Up-conversion study under the 980 nm laser irradiation exhibits the strong green colour bands at 526 and 548 nm as well as a red emission band at 660 nm, which arises due to the electronic transitions corresponding to  $^2\text{H}_{11/2} \rightarrow ^4\text{I}_{15/2}$ ,  $^4\text{S}_{3/2} \rightarrow ^4\text{I}_{15/2}$  and  $^4\text{F}_{9/2} \rightarrow ^4\text{I}_{15/2}$ . The observed green and red colour bands were predominantly ascribed to the phenomenon of two-photon absorption. Also, down-shifting under 980 nm excitation exhibits a strong emission band at 1535 nm, which is the characteristic transition of the  $\text{Er}^{3+}$  ion arising from  $^4\text{I}_{13/2} \rightarrow ^4\text{I}_{15/2}$ . Lifetime analysis was executed to study the decay dynamics of the green colour emission bands at  $\sim 545$  nm ( $^4\text{S}_{3/2} \rightarrow ^4\text{I}_{15/2}$ ). Colour tuning was observed in the CIE coordinates at different laser input powers. Synthesized phosphor materials may be utilized as the green colour phosphor and in optical communications.*

**Keywords:**  $\text{Er}^{3+}/\text{Yb}^{3+}$   $\text{SrTiO}_3$ , energy transfer, dual mode emission, CIE coordinate

### I. Introduction

Rare earth activated up-converting nanomaterials have shown possible promising applications in solar cells, temperature sensing, display and bioimaging due to their intriguing features of converting near infrared light into ultraviolet and visible light via multi-photon energy transfer processes [1–10]. The inorganic matrices, which accommodate activator ions, are usually termed as host matrices. There are various inorganic host matrices, such as  $\text{Y}_2\text{O}_3$ ,  $\text{Gd}_2\text{O}_3$ ,  $\text{ZrO}_2$ ,  $\text{YVO}_4$ ,  $\text{CaMoO}_4$ ,  $\text{YPO}_4$  and  $\text{LaPO}_4$ , reported for the up-conversion properties due to their low phonon energies [11–16]. Low phonon energy of the host material improves the radiative transition probabilities. Up-converting nanoparticles exhibit anti-Stokes emission

under 980 nm excitation covering the bioimaging window.

Strontium titanate ( $\text{SrTiO}_3$ ) is a promising host matrix for up-conversion applications due to its high thermal, chemical and physical stability, optical transparency in the visible region, and low phonon energy [17]. Trivalent erbium ions have been extensively used for the up-conversion emission under the 980 nm excitation. The metastable energy levels  $^4\text{I}_{11/2}$  and  $^4\text{I}_{9/2}$  of erbium ions can be populated under 980 nm. Trivalent  $\text{Yb}^{3+}$  ion acts as a sensitizer which transfers its energy to  $\text{Er}^{3+}$  ion since  $\text{Yb}^{3+}$  has a high absorption cross section at 980 nm, which leads to the enhanced visible luminescence [18].

Synthesis route and the nanophosphor materials with controlled shape and size have been crucial due to the correlation between photoluminescence and crystal structure. Several synthesis protocols, namely hydro and solvothermal, sol-gel and combustion, have been reported for  $\text{SrTiO}_3$  nanoparticles [19]. These routes fetch

\*Corresponding author: +91 9348811777  
e-mail: madhavaprasaddasari@gmail.com (M. Dasari)  
bsingh@gitam.edu (B.P. Singh)

the controlled shape and size, high homogeneity and less agglomeration of the nanoparticles. However, several defects are also associated with these routes, which hamper the luminescence intensity significantly.

In this work,  $\text{Er}^{3+}$  and  $\text{Yb}^{3+}$  co-doped  $\text{SrTiO}_3$  phosphors were successfully synthesized via a conventional solid-state ceramic route. The study provides a comprehensive investigation of the structural, morphological and bimodal optical properties encompassing both up-conversion (UC) and down-conversion (DC) emissions of the prepared phosphor system. Incorporation of  $\text{Er}^{3+}$  and  $\text{Yb}^{3+}$  ions into the  $\text{SrTiO}_3$  host matrix is of particular importance due to their well-known role in facilitating efficient energy transfer processes, which significantly enhance luminescence performance.

## II. Experimental

### 2.1. Synthesis

$\text{SrTiO}_3$  doped with 2 at.%  $\text{Er}^{3+}$  and 20 at.%  $\text{Yb}^{3+}$  ( $\text{SrTiO}_3$ : 0.02 $\text{Er}^{3+}$ /0.20 $\text{Yb}^{3+}$  phosphor) was synthesized using a conventional solid-state ceramic route. For a typical 4 g batch, stoichiometric amounts of  $\text{SrCO}_3$  (1.636 g),  $\text{TiO}_2$  (1.1348 g),  $\text{Er}_2\text{O}_3$  (0.1088 g) and  $\text{Yb}_2\text{O}_3$  (1.1196 g) were thoroughly mixed in an agate mortar with acetone as the grinding medium for approximately 3 h to ensure homogeneity. The resulting mixture was pre-calcined at 700 °C for 4 h in a temperature-controlled furnace. After natural cooling to room temperature, the calcined powders were uniaxially pressed at 4 MPa to form pellets with diameter of 10 mm using a 4% PVA solution as a temporary binder. The pellets were subsequently heated at 600 °C for 1 h to remove the binder and then sintered at 1200 °C for 6 h to promote complete phase formation.

### 2.2. Characterization techniques

X-ray diffraction (XRD) pattern was recorded on a Bruker D8 Advance power diffractometer at room tem-

perature. Fourier transform infrared (FTIR) study has been carried out by ATR-FTIR Spectrometer, ALPHA-II. Field emission scanning electron microscopy (FE-SEM, Zeiss Ultra 55) equipped with energy dispersive X-ray (EDX) was used to observe the morphology of the samples. UV-Visible spectrum and absorption studies were performed with Shimadzu UV-2600i. The up-conversion (UC) spectra were collected using an EDINBURGH instruments FLS1000 spectrometer, equipped with a 980 nm continuous-wave (CW) laser diode and a Hamamatsu R955 photomultiplier tube (PMT). The 980 nm laser beam was focused onto the sample, which produces a spot size with a diameter of approximately 1 mm. Decay time of green emitting level was recorded with an Edinburgh instrument FL1000 under the 980 nm excitation in pulse mode. Down-shifting emission spectrum was recorded with a 450 W Xenon flash lamp.

## III. Results and discussion

### 3.1. Structural characterization

XRD pattern of the  $\text{SrTiO}_3$ :0.02 $\text{Er}^{3+}$ /0.20 $\text{Yb}^{3+}$  is shown in Fig. 1 and confirms the presence of two phases, namely dominant cubic  $\text{SrTiO}_3$  perovskite and secondary  $\text{Yb}_2\text{Ti}_2\text{O}_7$  pyrochlore structure.

The Rietveld refinement was used to determine lattice parameters and content of cubic  $\text{SrTiO}_3$  and pyrochlore  $\text{Yb}_2\text{Ti}_2\text{O}_7$  phases. Six coefficient polynomials were used to model the peaks profile using pseudo-Voigt function. Most of the XRD peaks of the  $\text{SrTiO}_3$ :0.02 $\text{Er}^{3+}$ /0.20 $\text{Yb}^{3+}$  sample match the main diffraction peaks of the  $\text{SrTiO}_3$  cubic structure, which is perovskite with the space group of  $Pm\bar{3}m$ . Moreover, the secondary pyrochlore  $\text{Yb}_2\text{Ti}_2\text{O}_7$  phase with  $Fdm$  was also detected with the Rietveld analysis and indexing for both  $\text{SrTiO}_3$  and  $\text{Yb}_2\text{Ti}_2\text{O}_7$  phases was executed [20]. The Rietveld refinement data reveals the presence of 79.98 wt.% of  $\text{SrTiO}_3$  and 21.02 wt.% of  $\text{Yb}_2\text{Ti}_2\text{O}_7$  (Table 1). The existence of a small amount of the secondary phase may arise due to the lower sintering temperature (1200 °C in our case). The small amount of the secondary phase does not alter optical properties and further confirms the successful incorporation of  $\text{Er}^{3+}$  and  $\text{Yb}^{3+}$  ions in the  $\text{SrTiO}_3$  crystal lattice. Tritt *et al.* [21] showed that the crystallization of single phase perovskite structure can be obtained by sintering at 1400 °C. The ionic radii of  $\text{Sr}^{2+}$  in twelve-fold coordination and  $\text{Ti}^{4+}$  in six-fold coordination are 1.44 and 0.605 Å, respectively. Rare earth ions  $\text{Er}^{3+}$  (0.89 Å) and  $\text{Yb}^{3+}$  (0.868 Å) can be incorporated on both A- and B-sites of the perovskite cell. However, they most likely substitute  $\text{Sr}^{2+}$  at A-site of the cubic  $\text{SrTiO}_3$  crystal structure, since it provides the best compatibility for their accommodation in the crystal lattice because of the similar ionic radii [22].

FTIR spectrum of the  $\text{SrTiO}_3$ : $\text{Er}^{3+}$ / $\text{Yb}^{3+}$  sample was shown in Fig. 2. The spectrum reveals the presence of a strong band at  $\sim 527 \text{ cm}^{-1}$ , ascribed to the stretching

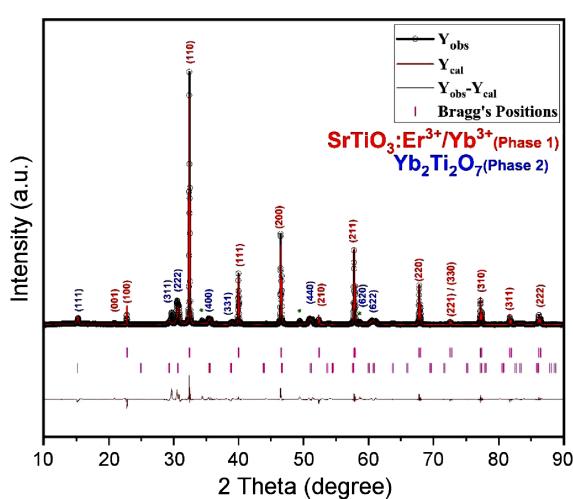
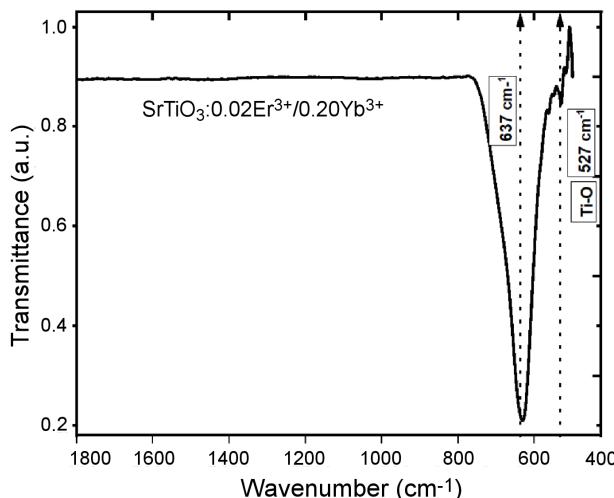
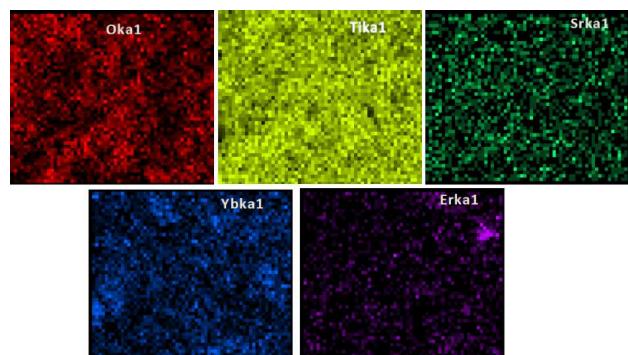
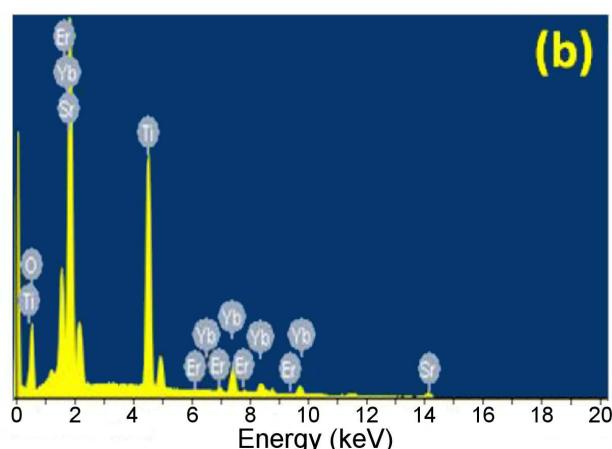
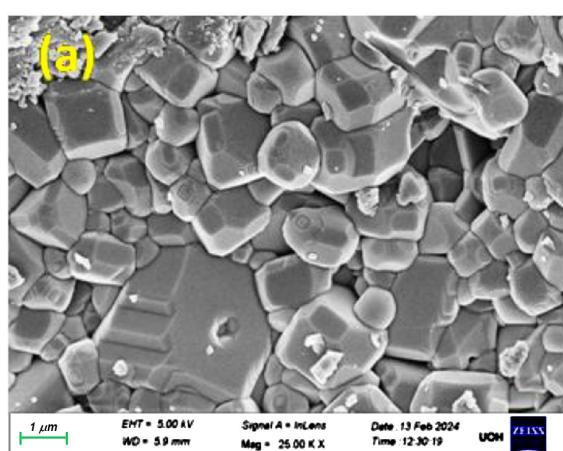




Figure 1. XRD pattern of the studied sample and Rietveld refinement

**Table 1. Rietveld refined lattice parameters and content of the  $\text{SrTiO}_3:\text{Er}^{3+}/\text{Yb}^{3+}$  and  $\text{Yb}_2\text{Ti}_2\text{O}_7$  phases**

| Sample details                                                      | Lattice parameters [Å] | Cell volume [Å <sup>3</sup> ] | Phase content [wt.%] |
|---------------------------------------------------------------------|------------------------|-------------------------------|----------------------|
| $\text{SrTiO}_3:\text{Er}^{3+}/\text{Yb}^{3+}$ $Pm\bar{3}m$ (cubic) | $a = 3.9048$           | 59.54                         | 78.98                |
| $\text{Yb}_2\text{Ti}_2\text{O}_7$ $Fd\bar{3}m$ (pyrochlore)        | $a = 10.1124$          | 1034.11                       | 21.02                |




**Figure 2. FTIR spectrum of the  $\text{SrTiO}_3:0.02\text{Er}^{3+}/0.20\text{Yb}^{3+}$  phosphor**

vibration of Ti–O bond. An intense and wide vibrational band appearing between  $\sim 800$  and  $500\text{ cm}^{-1}$  corresponds to the  $\text{SrTiO}_3$  stretching vibrations, which further confirms the formation of  $\text{SrTiO}_3$  [23]. Harooni and Attar [24] reported FTIR study for the Mg doped  $\text{SrTiO}_3$  thin films and observed the absorption at  $855\text{ cm}^{-1}$  which is due to the  $\text{TiO}_6$  octahedron vibration. The absorption peak with feeble intensity at  $798\text{ cm}^{-1}$  arises namely because of the Sr–Ti–O stretching vibrations. Similar observations were reported for the Ce doped  $\text{SrTiO}_3$  perovskite oxide [25].

Surface morphology of the  $\text{SrTiO}_3:\text{Er}^{3+}/\text{Yb}^{3+}$  ceramics sintered at  $1200^\circ\text{C}$  for 6 h is presented in Fig. 3a. The SEM micrograph, captured using backscattered electron (BSE) imaging on fractured pellets, clearly highlights the microstructural features of the sintered ceramics. The grains predominantly exhibit

irregular polyhedral shape, which is typical of high-temperature solid-state reactions and indicates significant grain growth and densification during sintering. The microstructure shows grains of varying dimensions, suggesting a non-uniform grain growth mechanism, often associated with dopant-induced lattice distortions or local inhomogeneities within the ceramic matrix.

The elemental composition of the prepared ceramics was further examined using energy-dispersive X-ray spectroscopy (EDX), as shown in Fig. 4. The spectrum confirms the presence of Sr, Ti and O corresponding to the  $\text{SrTiO}_3$  host lattice, along with clear signatures of the incorporated rare-earth dopants Er and Yb. No extraneous or impurity peaks were observed, indicating the chemical purity and successful incorporation of the dopants. Elemental mapping of Sr, Ti, O, Er and Yb, shown in Fig. 4, reveals a homogeneous spatial distribution of all constituent elements throughout the ceramic microstructure. The uniform dispersion of  $\text{Er}^{3+}$  and  $\text{Yb}^{3+}$  within the  $\text{SrTiO}_3$  lattice further supports their effective substitution at appropriate lattice sites, ensuring consistent optical and structural behaviour across

**Figure 4. Elemental mapping of elements in the  $\text{SrTiO}_3$ , namely O, Ti, Sr, Yb and Er****Figure 3. FESEM micrograph (a) and EDX spectra (b) of the  $\text{SrTiO}_3:0.02\text{Er}^{3+}/0.20\text{Yb}^{3+}$  phosphor**

the sample. This homogeneous distribution also indicates that the applied synthesis route leads to the efficient dopant incorporation without phase segregation or clustering.

### 3.2. Optical properties

Absorption spectrum of  $\text{Er}^{3+}/\text{Yb}^{3+}$  doped  $\text{SrTiO}_3$ , shown in Fig. 5, exhibits an absorption peak at 980 nm, which refers to the  $^2\text{F}_{7/2} \rightarrow ^2\text{F}_{5/2}$  electronic transition of the  $\text{Yb}^{3+}$  ion (Fig. 6). The peak at 526 nm corresponds to  $\text{Er}^{3+}$  ion absorption  $^4\text{I}_{15/2} \rightarrow ^2\text{H}_{11/2}$  (Fig. 6). The absorption peak centred at 980 nm for the sample co-doped with  $\text{Er}^{3+}/\text{Yb}^{3+}$  clearly validates that  $\text{Yb}^{3+}$  ion acts as a brilliant sensitizer for the absorption of the 980 nm laser light.

Up-conversion spectra were recorded under the 980 nm excitation wavelength at room temperature. There is a rise in up-conversion emission intensity with a rise in input laser power as the laser input power was varied from 50 to 500 mW with a step of 25 mW (Fig. 7). The sample fetches intensive green and red

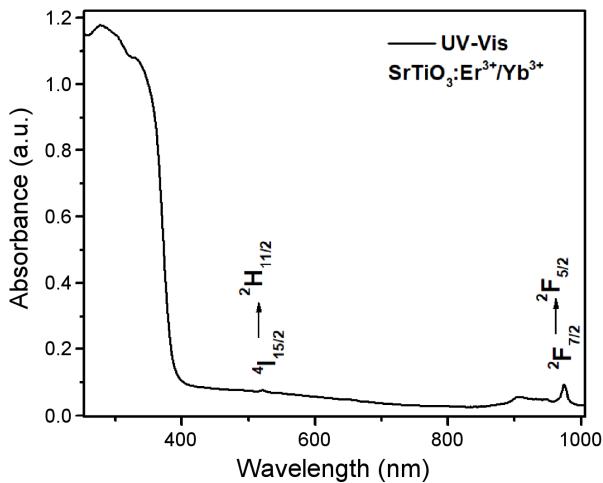



Figure 5. UV-Vis spectrum of the  $\text{SrTiO}_3:0.02\text{Er}^{3+}/0.20\text{Yb}^{3+}$  phosphor

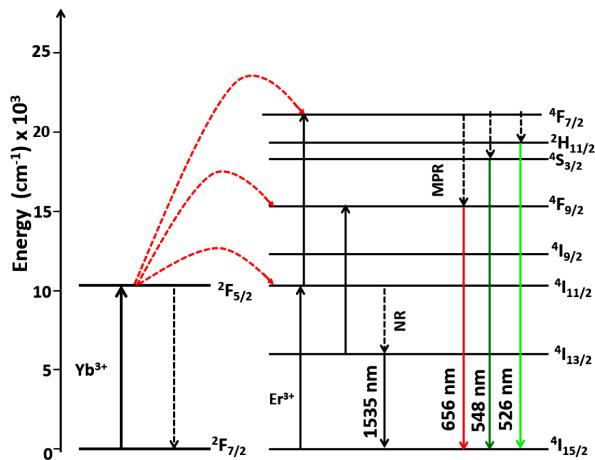



Figure 6. Energy transfer mechanisms in the  $\text{SrTiO}_3:0.02\text{Er}^{3+}/0.20\text{Yb}^{3+}$  phosphor

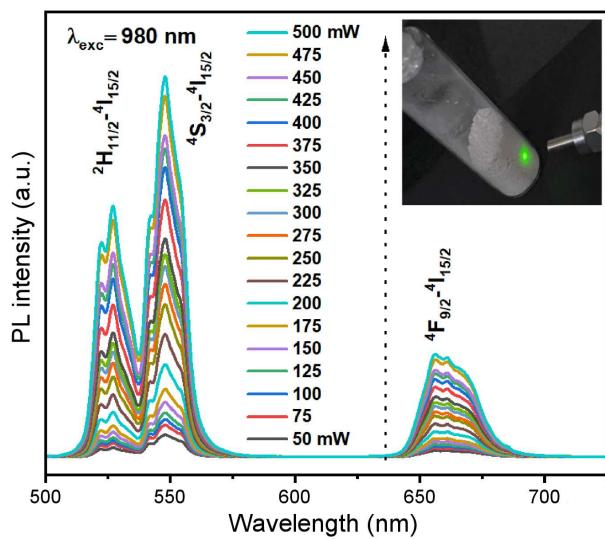
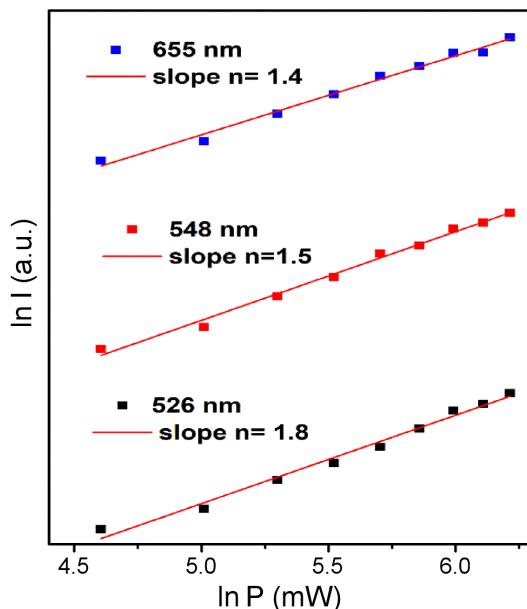
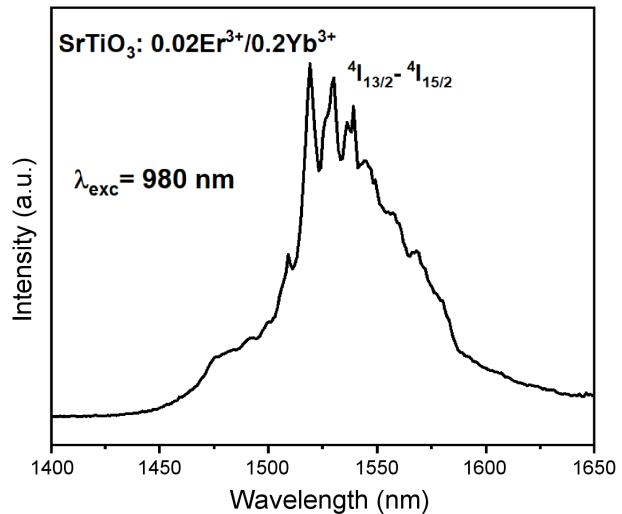
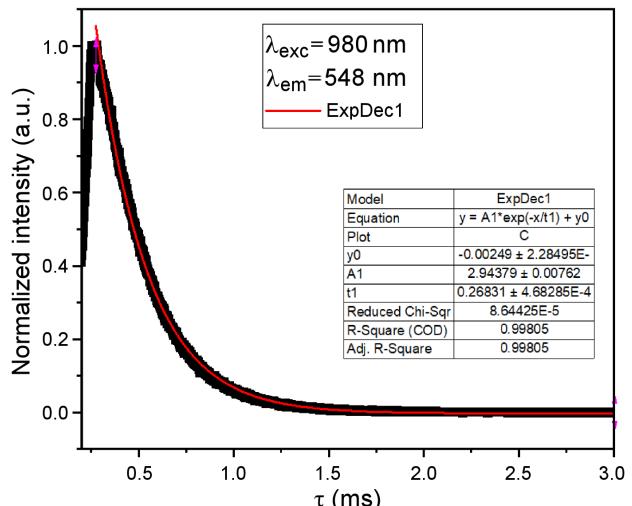




Figure 7. Power-dependent up-conversion spectra of  $\text{SrTiO}_3:0.02\text{Er}^{3+}/0.20\text{Yb}^{3+}$

emissions even at very low power  $\sim 50$  mW, which is very much vital for the device and biomedical applications [26]. The emission spectra exhibit the characteristic green and red colour bands appearing at 526, 548 and 660 nm (Fig. 7). These electronic bands of  $\text{Er}^{3+}$  ions arise due to transitions corresponding to  $^2\text{H}_{11/2} \rightarrow ^4\text{I}_{15/2}$ ,  $^4\text{S}_{3/2} \rightarrow ^4\text{I}_{15/2}$  and  $^4\text{F}_{9/2} \rightarrow ^4\text{I}_{15/2}$  (Fig. 6). The green energy bands at 526 and 548 nm are thermally coupled with each other and can be employed for the temperature sensing application. The powder sample shows a strong green emission at 548 nm under the 980 nm excitation.

In order to understand the up-conversion phenomena of perceived green bands and red bands, the up-conversion intensity varies with laser input power as  $I_{up} \propto P^n$ , where  $n$  refers to the number of pump photons absorbed,  $P$  refers to the laser input power and  $I_{up}$  is the up-conversion intensity.

Under the 980 nm CW laser excitation,  $\text{Yb}^{3+}$  ions get promoted from the ground state absorption (GSA) process, and  $\text{Yb}^{3+}$  and  $\text{Er}^{3+}$  ions are excited to their corresponding higher energy states, for  $\text{Yb}^{3+}$ ,  $^2\text{F}_{7/2} \rightarrow ^2\text{F}_{5/2}$  and for  $\text{Er}^{3+}$ ,  $^4\text{I}_{15/2} \rightarrow ^4\text{I}_{11/2}$  (Fig. 6). Excited state  $\text{Yb}^{3+}$  ions transfer their energy to the neighbouring  $\text{Er}^{3+}$  ion to populate the  $^4\text{F}_{7/2}$  level, and  $\text{Yb}^{3+}$  ions return to the ground state  $^2\text{F}_{7/2}$ . Additional energy transfer from  $^4\text{I}_{11/2}$  results in the increase of number of photons at the  $^4\text{F}_{7/2}$  energy level. The multiphonon vibrational relaxation occurs and takes place from the green emission bands (526 and 548 nm), which arise from the electronic transition from  $^2\text{H}_{11/2} \rightarrow ^4\text{I}_{15/2}$  and  $^4\text{S}_{3/2} \rightarrow ^4\text{I}_{15/2}$ , respectively. Regarding the red emission band (655 nm), the multiphonon vibrational relaxations from  $^2\text{H}_{11/2}$  and  $^4\text{S}_{3/2}$  enrich the occupants to the electronic transition  $^4\text{F}_{9/2} \rightarrow ^4\text{I}_{15/2}$  transition. Moreover, nonradiative relaxation from the  $^4\text{I}_{11/2}$  level to the  $^4\text{I}_{13/2}$  results in the population of the  $^4\text{F}_{9/2}$  level via energy transfer from  $\text{Yb}^{3+}$  ions. The electronic transition from  $^4\text{I}_{13/2}$  to  $^4\text{I}_{15/2}$  leads



Figure 8. Bi-logarithmic plots of  $\ln(P)$  vs  $\ln(I)$ 

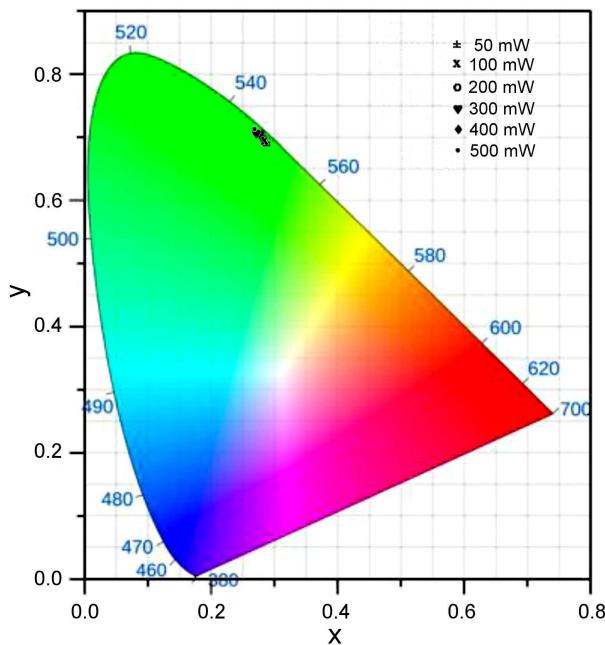
to the 1535 nm NIR emission bands, which are widely used in the optical communication window for Er-doped materials [27].

The number of photons involved for the observed green ( $^2\text{H}_{11/2} \rightarrow ^4\text{I}_{15/2}$  at  $\sim 526$  nm and  $^4\text{S}_{3/2} \rightarrow ^4\text{I}_{15/2}$  at  $\sim 548$  nm) and red bands ( $^4\text{F}_{9/2} \rightarrow ^4\text{I}_{15/2}$ , at  $\sim 655$  nm) were estimated via bi-logarithmic plots for intensity vs. logarithm of laser input power (Fig. 8). The linear fit to the data fetches the slope for these bands. The slope values obtained for green and red bands were 1.78, 1.65 and 1.54, respectively. The slope value thus obtained corresponds to the non-linear optical process in which sequential absorption of two-photon involvement is confirmed for the green and red bands.

The down-shifting emission spectrum was recorded under the 980 nm NIR excitation (Fig. 9). The emission band at 1535 nm corresponds to the electronic transition  $^4\text{I}_{13/2} \rightarrow ^4\text{I}_{15/2}$  of  $\text{Er}^{3+}$  ions. There are other shoulder peaks observed, which arise due to the stark splitting of the  $\text{Er}^{3+}$  ion in the  $\text{SrTiO}_3$  crystal lattice, along with the main emission peak, which corroborate the highly crystalline behaviour of the prepared ceramic material. This emission window may be used for optical telecommunications [26].

The decay kinetics of the green bands (548 nm,  $^4\text{S}_{3/2} \rightarrow ^4\text{I}_{15/2}$ ) and red bands (655 nm,  $^4\text{F}_{9/2} \rightarrow ^4\text{I}_{15/2}$ ) were also studied (Fig. 10). It is basically based on the principles of time correlated single photon counting (TC-SPC). In this method, every single excited photon is counted when an excited molecule is returning to the ground state. The number of photons is time-dependent and it shows a decay with a time. The decay profile of the green band follows a mono-exponentially decay and is fitted with a single exponential decay function via  $I(t) = I_0 \cdot \exp(-t/\tau)$  where  $I(t)$  is the intensity after time  $t$ ,  $I_0$  is the initial intensity and  $\tau$  is the lifetime of the

Figure 9. Down-shifting spectrum of  $\text{Er}^{3+}/\text{Yb}^{3+}$  doped  $\text{SrTiO}_3$  phosphor under the 980 nm excitationFigure 10. Decay curve of  $\text{Er}^{3+}/\text{Yb}^{3+}$  doped  $\text{SrTiO}_3$  phosphor for 548 nm ( $^4\text{S}_{3/2} \rightarrow ^4\text{I}_{15/2}$ ) green band


emitting level. The mono-exponential curve fit corroborates the homogeneous distribution of activator  $\text{Er}^{3+}$  ions in the host matrix. The decay time of the green band is observed to be  $\sim 268$  s, which matches with the earlier reported  $\text{Er}^{3+}$  doped samples [19,28].

The colour perception of the synthesized phosphor was studied under the different 980 nm laser input powers. The study corroborates the two-dimensional ( $x, y$ ) view of the emission bands emerging from the sample. Strong green colour observed in the  $x, y$  colour coordinates (Fig. 11) complement the emission band observed at 980 nm excitation. The marginal colour tunability is observed with laser input power. The colour purity ( $CP$ ) of the ceramic powder was estimated using the following equation [29,30]:

$$CP = \sqrt{\frac{(x - x_i)^2 + (y - y_i)^2}{(x_d - x_i)^2 + (y_d - y_i)^2}} \times 100 \quad (1)$$

**Table 2. Change of CIE coordinates with laser input power and corresponding colour purity**

| Dominant wavelength / laser input power | <i>x</i> | <i>y</i> | <i>x<sub>d</sub></i> | <i>y<sub>d</sub></i> | <i>x<sub>i</sub></i> | <i>y<sub>i</sub></i> | Colour purity |
|-----------------------------------------|----------|----------|----------------------|----------------------|----------------------|----------------------|---------------|
| 548 nm / 50 mW                          | 0.290    | 0.693    | 0.287                | 0.705                | 0.310                | 0.316                | 96.88         |
| 548 nm / 100 mW                         | 0.288    | 0.695    | 0.287                | 0.705                | 0.310                | 0.316                | 97.42         |
| 548 nm / 200 mW                         | 0.283    | 0.699    | 0.287                | 0.705                | 0.310                | 0.316                | 98.53         |
| 548 nm / 300 mW                         | 0.277    | 0.703    | 0.287                | 0.705                | 0.310                | 0.316                | 99.67         |
| 548 nm / 400 mW                         | 0.273    | 0.706    | 0.287                | 0.705                | 0.310                | 0.316                | 100.53        |
| 548 nm / 500 mW                         | 0.270    | 0.709    | 0.287                | 0.705                | 0.310                | 0.316                | 101.37        |

**Figure 11. CIE diagram of Er<sup>3+</sup>/Yb<sup>3+</sup> doped SrTiO<sub>3</sub> phosphor**

where  $(x, y)$  are the CIE coordinates,  $(x_i, y_i)$  are the illumination points and  $(x_d, y_d)$  correspond to the coordinates of the dominant wavelength. Changes of the CIE coordinates and colour purity with laser power were calculated using Eq. (1) and presented in Table 2. At 300 mW laser input power, ~99.67% colour purity was attained. Moreover, beyond this power, colour saturation occurs. Similar results were also obtained in Eu<sup>3+</sup>/Sm<sup>3+</sup> doped YPO<sub>4</sub> host matrices [14].

#### IV. Conclusions

Dual mode luminescence emitter Er<sup>3+</sup>/Yb<sup>3+</sup> co-doped SrTiO<sub>3</sub> phosphor was synthesized via the solid-state ceramic route at high temperature of 1200 °C. The synthesized phosphor materials exhibit outstanding green and red emission bands at 548 nm and 655 nm, which arise due to the electronic transitions  $^4S_{3/2} \rightarrow ^4I_{15/2}$  and  $^4F_{9/2} \rightarrow ^4I_{15/2}$ , respectively. The power-dependent study confirms that these two bands arise due to a two-photon process. The CIE coordinates confirm the colour perception in the green region. Colour tunability was observed with varying laser input power at the 980 nm excitation. The lifetime of the  $^4S_{3/2}$  is ob-

served to be 268 μs. The down-shifting emission exhibits the band at 1535 nm, which arises due to  $^4I_{13/2} \rightarrow ^4I_{15/2}$  transition. This emission band may be crucial for laser gain and optical telecommunication applications. The current study demonstrates dual mode emission in visible and near-infrared regions for the expansion of possible applications of the up- and down-shifting phosphors for displays and optical communications.

**Acknowledgement:** One of the authors, Bheeshma Pratap Singh, is thankful for the financial support from DST Inspire Project (IFA-17-MS109) and DST PURSE Grant SR/PURSE/2023/169(G).

#### References

1. A.K. Soni, R. Joshi, B.P. Singh, N.N. Kumar, R.S. Ningthoujam, “Near-infrared- and magnetic-field-responsive NaYF<sub>4</sub>:Er<sup>3+</sup>/Yb<sup>3+</sup>@SiO<sub>2</sub>@AuNP@Fe<sub>3</sub>O<sub>4</sub> nanocomposites for hyperthermia applications induced by fluorescence resonance energy transfer and surface plasmon absorption”, *ACS Appl. Nano Mater.*, **2** (2019) 7350–7361.
2. R. Joshi, R.S. Perala, A. Ballal, S.B. Shelar, B.P. Singh, R.S. Ningthoujam, “Super bright red up-conversion in NaErF<sub>4</sub>:0.5%Tm@NaYF<sub>4</sub>:20%Yb nanoparticles for anti-counterfeiting and bioimaging applications”, *ACS Appl. Mater. Interfaces*, **15** (2021) 3481–3490.
3. L.S. Devi, M. Srivastava, R. Agrawal, R.S. Perala, R. Joshi, B.P. Singh, R.S. Ningthoujam, “Ultralow concentration in parts per trillion with nanomolar level detection for monodispersed upconversion nanoparticles of Li-co-doped NaYF<sub>4</sub>:Ho<sup>3+</sup>/Yb<sup>3+</sup>: Potential materials in multimodal applications”, *ACS Appl. Opt. Mater.*, **3** (2025) 444–454.
4. R. Agrawal, S. Patra, S.B. Shelar, C. Kumar, M. Srivastava, S. Chakraborty, R.S. Ningthoujam, “Li-doped NaYF<sub>4</sub>:Ho, Yb upconversion nanoparticles for chemotherapy and radionuclide therapy of cancer”, *ACS Appl. Nano Mater.*, **7** (2024) 21800–21813.
5. G. Chen, I. Roy, C. Yang, P.N. Prasad, “Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy”, *Chem. Rev.*, **116** (2016) 286–2885.
6. M. Nyk, R. Kumar, T.Y. Ohulchansky, E.J. Bergey, P.N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm<sup>3+</sup> and Yb<sup>3+</sup> doped fluoride nanophosphors”, *Nano Lett.*, **8** (2008) 3834–3838.
7. Z. Xia, R.S. Liu, “Tunable blue-green color emission and energy transfer of Ca<sub>2</sub>Al<sub>3</sub>O<sub>6</sub>F:Ce<sup>3+</sup>, Tb<sup>3+</sup> phosphors for near-UV white LEDs”, *J. Phys. Chem. C*, **116** (2012) 15604–15609.

8. X. Huang, S. Han, W. Huang, X. Liu, “Enhancing solar cell efficiency: The search for luminescent materials as spectral converters”, *Chem. Soc. Rev.*, **416** [2] (2013) 173–201.
9. F. Wang, D. Banerjee, Y. Liu, X. Chen, X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy”, *Analyst*, **135** (2010) 1839–1854.
10. B. Zhou, B. Shi, D. Jin, X. Liu, “Controlling upconversion nanocrystals for emerging applications”, *Nat. Nanotech.*, **10** (2015) 924–936.
11. M. Srivastava, R. Agrwal, “Codoping of yttria ( $Y_2O_3$ ): Ho-Yb nanoparticles with Li increase emitted green light intensity for security ink and bioimaging”, *ACS Appl. Nano Mater.*, **6** [22] (2023) 20887–20898.
12. H.S. Lokesha, K.R. Nagabhushana, M.L. Chithamb, F. Singh, “Down and up conversion photoluminescence of  $ZrO_2:Er^{3+}$  phosphor irradiated with 120 MeV gold ions”, *Mater. Res. Express*, **7** (2020) 064006.
13. L. Xu, Y.n Yu, X. Li, G. Somesfalean, Y. Zhang, H. Gao, Z. Zhang, “Synthesis and upconversion properties of monoclinic  $Gd_2O_3:Er^{3+}$  nanocrystals”, *Opt. Mater.*, **30** (2008) 1284–1288.
14. B.P. Singh, M. Srivastavab, K.V. Ramesha, M.C. Varmaa, P. Atchutha Raoc, B. Sahu, A. Bairagya, S. Devarakonda, H. Korlapati, R.S. Ningthoujam, “Nano architectonics of PEGylated  $YPO_4$ :  $Eu^{3+}$ ,  $Sm^{3+}$ ,  $Tb^{3+}$  doped nanoparticles: Optical and anticounterfeit application”, *Ceram. Int.*, **51** (2025) 6772–6782.
15. B.P. Singh, A.K. Parchur, A.A. Ansari, P. Singh, S.B. Rai, “Enhanced photoluminescence in  $CaMO_4:Eu$  by Gd cooping”, *Dalton Trans.*, **43** (2014) 4789.
16. P. Ghosh, J. Oliva, E. De la Rosa, K.K. Haldar, D. Solis, A. Patra, “Enhancement of upconversion emission of  $LaPO_4:Er@Yb$  core-shell nanoparticles/nanorods”, *J. Phys. Chem. C*, **112** (2008) 9650–9658.
17. D. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, “Band-gap energies of sol-gel-derived  $SrTiO_3$  thin films”, *App. Phys. Lett.*, **79** (2001) 3767–3769.
18. F. Vetrone, J.C. Boyer, J.A. Capobianco, M. Bettinelli, “Effect of  $Yb^{3+}$  cooping on upconversion emission in nanocrystalline  $Y_2O_3:Er^{3+}$ ”, *J. Phys. Chem. B*, **107** (2003) 1107–1112.
19. C. Stanciu, S. Hau, G. Stanciu, C. Tihon, “Er, Yb-codoped  $SrTiO_3$  ceramics: Synthesis, structural, microstructural and optical characterization”, *Ceram. Int.*, **51** (2025) 16771–16779.
20. O.V. Nemytova, I.V. Piir, M.S. Koroleva, D.V. Perov, A.B. Rinkevich, “Magnetic properties of nanocomposite and bulk rare earth titanates  $Ho_2Ti_2O_7$  and  $Yb_2Ti_2O_7$ ”, *J. Magn. Magn Mater.*, **494** (2020) 165800.
21. A.M. Dehkordi, S. Bhattacharya, T. Darroudi, X. Zeng, H.N. Alshareef, T.M. Tritt, “Synthesis of non-uniformly Pr-doped  $SrTiO_3$  ceramics and their thermoelectric properties”, *J. Vis. Exp.*, **102** (2015) e52869.
22. R.D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides”, *Acta Cryst.*, **A32** (1976) 751.
23. A.M. Youssef, H.K. Farag, A. El-Kheshen, F.F. Hammad, “Synthesis of nano-structured strontium titanate by sol-gel and solid-state routes”, *Silicon*, **10** (2018) 1225–1230.
24. M. Harooni, A.S. Attar, “Enhanced dielectric properties and energy storage density of Mg-doped  $SrTiO_3$  nanowire films”, *Process. Appl. Ceram.*, **16** (2022) 55–63.
25. V. Yadav, H. Cheema, R.S. Maurya, S. Kumar, P.A. Alvi1, M. Sharma, U. Kumar, “Study of structural, optical, dielectric, and electric properties of homovalently substituted Ce in  $SrTiO_3$  perovskite oxide”, *Ionics*, **28** (2022) 5513–5524.
26. B.P. Singh, A.K. Parchur, R.K. Singh, A.A. Ansari, P. Singh, S.B. Rai, “Structural and up-conversion properties of  $Er^{3+}$  and  $Yb^{3+}$  co-doped  $Y_2Ti_2O_7$  phosphors”, *Phys. Chem. Chem. Phys.*, **15** (2013) 3480–3489.
27. I. Etchart, A. Huignard, M. Berard, M.N. Nordin, I. Hernandez, R.J. Curry, W.P. Gillin, A.K. Cheetham, “Oxide phosphors for efficient light upconversion:  $Yb^{3+}$  and  $Er^{3+}$  co-doped  $Ln_2BaZnO_5$  ( $Ln = Y, Gd$ ”, *J. Mater. Chem.*, **20** (2010) 3989.
28. A. Patra, C.S. Friend, R. Kapoor, P.N. Prasad, “Upconversion in  $Er^{3+}:ZrO_2$  nanocrystal”, *J. Phys. Chem. B*, **106** (2002) 1909.
29. Maheshwary, B.P. Singh, R.A. Singh, “Effect of annealing on the structural, optical and emissive properties of  $SrWO_4:Ln^{3+}$  ( $Dy^{3+}$ ,  $Eu^{3+}$  and  $Sm^{3+}$ ) nanoparticles”, *Spectrochim. Acta*, **152** (2016) 199–207.
30. N. Jain, B.P. Singh, R.K. Singh, J. Singh, R.A. Singh, “Enhanced photoluminescence behaviour of  $Eu^{3+}$  activated  $ZnMoO_4$  nanophosphors via  $Tb^{3+}$  co-doping for light emitting diode”, *J. Lumin.*, **188** (2017) 504–513.